Applied Sciences (Jun 2023)

Distributed GNE Seeking under Global-Decision and Partial-Decision Information over Douglas-Rachford Splitting Method

  • Jingran Cheng,
  • Menggang Chen,
  • Huaqing Li,
  • Yawei Shi,
  • Zhongzheng Wang,
  • Jialong Tang

DOI
https://doi.org/10.3390/app13127058
Journal volume & issue
Vol. 13, no. 12
p. 7058

Abstract

Read online

This paper develops an algorithm for solving the generalized Nash equilibrium problem (GNEP) in non-cooperative games. The problem involves a set of players, each with a cost function that depends on their own decision as well as the decisions of other players. The goal is to find a decision vector that minimizes the cost for each player. Unlike most of the existing algorithms for GNEP, which require full information exchange among all players, this paper considers a more realistic scenario where players can only communicate with a subset of players through a connectivity graph. The proposed algorithm enables each player to estimate the decisions of other players and update their own and others’ estimates through local communication with their neighbors. By introducing a network Lagrangian function and applying the Douglas-Rachford splitting method (DR), the GNEP is reformulated as a zero-finding problem. It is shown that the DR method can find the generalized Nash equilibrium (GNE) of the original problem under some mild conditions.

Keywords