OncoImmunology (Dec 2022)

Targeting 3D chromosomal architecture at the RANK loci to suppress myeloma-driven osteoclastogenesis

  • Katja Thümmler,
  • Mark TS Williams,
  • Susan Kitson,
  • Shatakshi Sood,
  • Moeed Akbar,
  • John J Cole,
  • Ewan Hunter,
  • Richard Soutar,
  • Carl S Goodyear

DOI
https://doi.org/10.1080/2162402X.2022.2104070
Journal volume & issue
Vol. 11, no. 1

Abstract

Read online

Bone disease represents a major cause of morbidity and mortality in Multiple Myeloma (MM); primarily driven by osteoclasts whose differentiation is dependent on expression of RANKL by MM cells. Notably, costimulation by ITAM containing receptors (i.e., FcγR) can also play a crucial role in osteoclast differentiation. Modeling the pathology of the bone marrow microenvironment with an ex vivo culture system of primary human multiple myeloma cells, we herein demonstrate that FcγR-mediated signaling, via staphylococcal protein A (SpA) IgG immune-complexes, can act as a critical negative regulator of MM-driven osteoclast differentiation. Interrogation of the mode-of-action revealed that FcγR-mediated signaling causes epigenetic modulation of chromosomal 3D architecture at the RANK promoter; with altered spatial orientation of a proximal super enhancer. Combined this leads to substantial down-regulation of RANK at a transcript, protein, and functional level. These observations shed light on a novel mechanism regulating RANK expression and provide a rationale for targeting FcγR-signaling for the amelioration of osteolytic bone pathology in disease.

Keywords