Materials (Nov 2022)

Peculiarities of γ-Al<sub>2</sub>O<sub>3</sub> Crystallization on the Surface of h-BN Particles

  • Sergey N. Grigoriev,
  • Elena A. Trusova,
  • Asya M. Afzal,
  • Thet Naing Soe,
  • Alexandra Yu. Kurmysheva,
  • Ekaterina Kuznetsova,
  • Anton Smirnov,
  • Nestor Washington Solís Pinargote

DOI
https://doi.org/10.3390/ma15228054
Journal volume & issue
Vol. 15, no. 22
p. 8054

Abstract

Read online

The main goal of the present work was to synthesize a composite consisting of h-BN particles coated with a γ-Al2O3 nanolayer. A method was proposed for applying nanocrystalline γ-Al2O3 to h-BN particles using a sol–gel technique, which ensures the chemical homogeneity of the composite at the nano level. It has been determined that during crystallization on the h-BN surface, the proportion of spinel in alumina decreases from 40 wt.% in pure γ-Al2O3 to 30 wt.% as a result of the involvement of the B3+ ions from the surface nitride monolayers into the transition complex. For comparison, nano-alumina was synthesized from the same sol under the same conditions as the composite. The characterization of the obtained nanostructured powders was carried out using TEM and XRD. A mechanism is proposed for the formation of a nanostructured γ-Al2O3@h-BN composite during the interaction of Al-containing sol and h-BN suspension in aqueous organic media. The resulting composite is a promising model of powdered raw materials for the development of fine-grained ceramic materials for a wide range of applications.

Keywords