Remote Sensing (Sep 2019)

Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites

  • Dariusz Strugarek,
  • Krzysztof Sośnica,
  • Daniel Arnold,
  • Adrian Jäggi,
  • Radosław Zajdel,
  • Grzegorz Bury,
  • Mateusz Drożdżewski

DOI
https://doi.org/10.3390/rs11192282
Journal volume & issue
Vol. 11, no. 19
p. 2282

Abstract

Read online

Sentinel-3A/3B (S3A/B) satellites are equipped with a number of precise instruments dedicated to the measurement of surface topography, sea and land surface temperatures and ocean and land surface color. The high-precision orbit is guaranteed by three instruments: Global Positioning System (GPS) receiver, laser retroreflector dedicated to Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) antenna. In this article, we check the possibility of using SLR observations and GPS-based reduced-dynamic orbits of active S3A/B satellites for the determination of global geodetic parameters, such as geocenter motion, Earth rotation parameters (ERPs) and the realization of the terrestrial reference frame, based on data from 2016-2018. The calculation process was preceded with the estimation of SLR site range biases, different network constraining tests and a different number of orbital arcs in the analyzed solutions. The repeatability of SLR station coordinates based solely on SLR observations to S3A/B is at the level of 8-16 mm by means of interquartile ranges even without network constraining in 7-day solutions. The combined S3A/B and LAGEOS solutions show a consistency of estimated station coordinates better than 13 mm, geocenter coordinates with a RMS of 6 mm, pole coordinates with a RMS of 0.19 mas and Length-of-day with a RMS of 0.07 ms/day when referred to the IERS-14-C04 series. The altimetry observations have to be corrected by the geocenter motion to obtain unbiased estimates of the mean sea level rise. The geocenter motion is typically derived from SLR measurements to passive LAGEOS cannonball-like satellites. We found, however, that SLR observations to active Sentinel satellites are well suited for the determination of global geodetic parameters, such as Earth rotation parameters and geocenter motion, which even further increases the potential applications of Sentinel missions for deriving geophysical parameters.

Keywords