Nuclear Materials and Energy (Aug 2017)
Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
- V. Bobkov,
- D. Aguiam,
- M. Baruzzo,
- D. Borodin,
- I. Borodkina,
- S. Brezinsek,
- I. Coffey,
- L. Colas,
- A. Czarnecka,
- E. Delabie,
- P. Dumortier,
- F. Durodie,
- R. Dux,
- H. Faugel,
- H. Fünfgelder,
- C. Giroud,
- M. Goniche,
- J. Hobirk,
- A. Herrmann,
- J. Jacquot,
- Ph. Jacquet,
- A. Kallenbach,
- A. Krivska,
- C.C. Klepper,
- E. Lerche,
- S. Menmuir,
- D. Milanesio,
- R. Maggiora,
- I. Monakhov,
- F. Nave,
- R. Neu,
- J.-M. Noterdaeme,
- R. Ochoukov,
- Th. Pütterich,
- M. Reinke,
- A. Tuccilo,
- O. Tudisco,
- D. Van Eester,
- Y. Wang,
- Q. Yang,
- W. Zhang
Affiliations
- V. Bobkov
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany; Corresponding author:
- D. Aguiam
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- M. Baruzzo
- ENEA, Frascati, Italy
- D. Borodin
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Jülich 52425, Germany
- I. Borodkina
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Jülich 52425, Germany; National Research Nuclear University (Mephi), Kashirskoe sh., 31, Moscow, Russia
- S. Brezinsek
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Jülich 52425, Germany
- I. Coffey
- CCFE, Culham Science Centre, Oxon, OX14 3DB, Abingdon, UK
- L. Colas
- CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France
- A. Czarnecka
- Institute of Plasma Physics and Laser Microfusion, Hery 23 Str., Warsaw 01-497, Poland
- E. Delabie
- Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, USA
- P. Dumortier
- LPP-ERM-KMS, TEC partner, Brussels, Belgium
- F. Durodie
- LPP-ERM-KMS, TEC partner, Brussels, Belgium
- R. Dux
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- H. Faugel
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- H. Fünfgelder
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- C. Giroud
- CCFE, Culham Science Centre, Oxon, OX14 3DB, Abingdon, UK
- M. Goniche
- CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France
- J. Hobirk
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- A. Herrmann
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- J. Jacquot
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- Ph. Jacquet
- CCFE, Culham Science Centre, Oxon, OX14 3DB, Abingdon, UK
- A. Kallenbach
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- A. Krivska
- LPP-ERM-KMS, TEC partner, Brussels, Belgium
- C.C. Klepper
- Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, USA
- E. Lerche
- LPP-ERM-KMS, TEC partner, Brussels, Belgium
- S. Menmuir
- CCFE, Culham Science Centre, Oxon, OX14 3DB, Abingdon, UK
- D. Milanesio
- Politecnico di Torino, Italy
- R. Maggiora
- Politecnico di Torino, Italy
- I. Monakhov
- CCFE, Culham Science Centre, Oxon, OX14 3DB, Abingdon, UK
- F. Nave
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- R. Neu
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany; Technische Universität München, Boltzmannstr. 15, Garching 85748, Germany
- J.-M. Noterdaeme
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany; Applied Physics Department, University of Ghent, Ghent, Belgium
- R. Ochoukov
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- Th. Pütterich
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany
- M. Reinke
- Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, USA
- A. Tuccilo
- ENEA, Frascati, Italy
- O. Tudisco
- ENEA, Frascati, Italy
- D. Van Eester
- LPP-ERM-KMS, TEC partner, Brussels, Belgium
- Y. Wang
- ASIPP, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
- Q. Yang
- ASIPP, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
- W. Zhang
- Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748, Germany; Applied Physics Department, University of Ghent, Ghent, Belgium
- Journal volume & issue
-
Vol. 12
pp. 1194 – 1198
Abstract
Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90° phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation. Keywords: ICRF, RF sheath, Three-strap, 3-strap, ASDEX Upgrade, JET, ILW, A2 antenna, ILA, Sputtering