Journal of NeuroEngineering and Rehabilitation (Jul 2024)

Differential training benefits and motor unit remodeling in wrist force precision tasks following high and low load blood flow restriction exercises under volume-matched conditions

  • Yen-Ting Lin,
  • Chun-Man Wong,
  • Yi-Ching Chen,
  • Yueh Chen,
  • Ing-Shiou Hwang

DOI
https://doi.org/10.1186/s12984-024-01419-5
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain the differing effects after volume-matched high-load and low-load BFR training. Methods Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0–75%–0% MVC) with multi-channel surface electromyography (EMG) from the extensor digitorum. Results The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals (p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were consistently reduced with training for the two groups. Conclusions BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision control due to activation of MUs with lower recruitment thresholds and higher discharge rates.

Keywords