BMC Plant Biology (Nov 2019)

Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development

  • Hanhan Xie,
  • Dan Wang,
  • Yaqi Qin,
  • Anna Ma,
  • Jiaxin Fu,
  • Yonghua Qin,
  • Guibing Hu,
  • Jietang Zhao

DOI
https://doi.org/10.1186/s12870-019-2120-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background SWEETs (Sugar Will Eventually be Exported transporters) function as sugar efflux transporters that perform diverse physiological functions, including phloem loading, nectar secretion, seed filling, and pathogen nutrition. The SWEET gene family has been identified and characterized in a number of plant species, but little is known about in Litchi chinensis, which is an important evergreen fruit crop. Results In this study, 16 LcSWEET genes were identified and nominated according to its homologous genes in Arabidopsis and grapevine. Multiple sequence alignment showed that the 7 alpha-helical transmembrane domains (7-TMs) were basically conserved in LcSWEETs. The LcSWEETs were divided into four clades (Clade I to Clade IV) by phylogenetic tree analysis. A total of 8 predicted motifs were detected in the litchi LcSWEET genes. The 16 LcSWEET genes were unevenly distributed in 9 chromosomes and there was one pairs of segmental duplicated events by synteny analysis. The expression patterns of the 16 LcSWEET genes showed higher expression levels in reproductive organs. The temporal and spatial expression patterns of LcSWEET2a and LcSWEET3b indicated they play central roles during early seed development. Conclusions The litchi genome contained 16 SWEET genes, and most of the genes were expressed in different tissues. Gene expression suggested that LcSWEETs played important roles in the growth and development of litchi fruits. Genes that regulate early seed development were preliminarily identified. This work provides a comprehensive understanding of the SWEET gene family in litchi, laying a strong foundation for further functional studies of LcSWEET genes and improvement of litchi fruits.

Keywords