The Astronomical Journal (Jan 2023)

A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz

  • Jean-Luc Margot,
  • Megan G. Li,
  • Pavlo Pinchuk,
  • Nathan Myhrvold,
  • Larry Lesyna,
  • Lea E. Alcantara,
  • Megan T. Andrakin,
  • Jeth Arunseangroj,
  • Damien S. Baclet,
  • Madison H. Belk,
  • Zerxes R. Bhadha,
  • Nicholas W. Brandis,
  • Robert E. Carey,
  • Harrison P. Cassar,
  • Sai S. Chava,
  • Calvin Chen,
  • James Chen,
  • Kellen T. Cheng,
  • Alessia Cimbri,
  • Benjamin Cloutier,
  • Jordan A. Combitsis,
  • Kelly L. Couvrette,
  • Brandon P. Coy,
  • Kyle W. Davis,
  • Antoine F. Delcayre,
  • Michelle R. Du,
  • Sarah E. Feil,
  • Danning Fu,
  • Travis J. Gilmore,
  • Emery Grahill-Bland,
  • Laura M. Iglesias,
  • Zoe Juneau,
  • Anthony G. Karapetian,
  • George Karfakis,
  • Christopher T. Lambert,
  • Eric A. Lazbin,
  • Jian H. Li,
  • Zhuofu (Chester) Li,
  • Nicholas M. Liskij,
  • Anthony V. Lopilato,
  • Darren J. Lu,
  • Detao Ma,
  • Vedant Mathur,
  • Mary H. Minasyan,
  • Maxwell K. Muller,
  • Mark T. Nasielski,
  • Janice T. Nguyen,
  • Lorraine M. Nicholson,
  • Samantha Niemoeller,
  • Divij Ohri,
  • Atharva U. Padhye,
  • Supreethi V. Penmetcha,
  • Yugantar Prakash,
  • Xinyi (Cindy) Qi,
  • Liam Rindt,
  • Vedant Sahu,
  • Joshua A. Scally,
  • Zefyr Scott,
  • Trevor J. Seddon,
  • Lara-Lynn V. Shohet,
  • Anchal Sinha,
  • Anthony E. Sinigiani,
  • Jiuxu Song,
  • Spencer M. Stice,
  • Nadine M. Tabucol,
  • Andria Uplisashvili,
  • Krishna Vanga,
  • Amaury G. Vazquez,
  • George Vetushko,
  • Valeria Villa,
  • Maria Vincent,
  • Ian J. Waasdorp,
  • Ian B. Wagaman,
  • Amanda Wang,
  • Jade C. Wight,
  • Ella Wong,
  • Natsuko Yamaguchi,
  • Zijin Zhang,
  • Junyang Zhao,
  • Ryan S. Lynch

DOI
https://doi.org/10.3847/1538-3881/acfda4
Journal volume & issue
Vol. 166, no. 5
p. 206

Abstract

Read online

We conducted a search for narrowband radio signals over four observing sessions in 2020–2023 with the L -band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ∼11,680 stars and planetary systems in the ∼9′ beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. We also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense radio frequency interference are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ∼15 times smaller at ∼6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake figure of merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is continuously transmitting a narrowband signal with an equivalent isotropic radiated power (EIRP) > 10 ^13 W. For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5 × 10 ^16 W) is at most 3 × 10 ^−4 . Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al.

Keywords