BMC Genomics (Apr 2009)

A high resolution RH map of the bovine major histocompatibility complex

  • Womack James E,
  • Raudsepp Terje,
  • Cothran Marian,
  • Gustafson-Seabury Ashley L,
  • Fritz Krista L,
  • Childers Christopher P,
  • Brinkmeyer-Langford Candice L,
  • Skow Loren C

DOI
https://doi.org/10.1186/1471-2164-10-182
Journal volume & issue
Vol. 10, no. 1
p. 182

Abstract

Read online

Abstract Background The cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence. Results Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC. Conclusion These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.