Journal of Pharmacological Sciences (Jan 2008)

A Novel Chalcone Polyphenol Inhibits the Deacetylase Activity of SIRT1 and Cell Growth in HEK293T Cells

  • Tomoaki Kahyo,
  • Shuji Ichikawa,
  • Takahiro Hatanaka,
  • Maki K. Yamada,
  • Mitsutoshi Setou

Journal volume & issue
Vol. 108, no. 3
pp. 364 – 371

Abstract

Read online

SIRT1 is one of seven mammalian orthologs of yeast silent information regulator 2 (Sir2), and it functions as a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. Recently, resveratrol and its analogues, which are polyphenols, have been reported to activate the deacetylase activity of SIRT1 in an in vitro assay and to expand the life-span of several species through Sir2 and the orthologs. To find activators or inhibitors to SIRT1, we examined thirty-six polyphenols, including stilbenes, chalcones, flavanones, and flavonols, with the SIRT1 deacetylase activity assay using the acetylated peptide of p53 as a substrate. The results showed that 3,2’,3’,4’-tetrahydroxychalcone, a newly synthesized compound, inhibited the SIRT1-mediated deacetylation of a p53 acetylated peptide and recombinant protein in vitro. In addition, this agent induced the hyperacetylation of endogenous p53, increased the endogenous p21CIP1/WAF1 in intact cells, and suppressed the cell growth. These results indicated that 3,2’,3’,4’-tetrahydroxychalcone had a stronger inhibitory effect on the SIRT1-pathway than sirtinol, a known SIRT1-inhibitor. Our results mean that 3,2’,3’,4’-tetrahydroxychalcone is a novel inhibitor of SIRT1 and produces physiological effects on organisms probably through inhibiting the deacetylation by SIRT1. Keywords:: SIRT1, deacetylation, inhibitor, polyphenol, p53