Sensors (Jul 2024)

ABDGAN: Arbitrary Time Blur Decomposition Using Critic-Guided TripleGAN

  • Tae Bok Lee,
  • Yong Seok Heo

DOI
https://doi.org/10.3390/s24154801
Journal volume & issue
Vol. 24, no. 15
p. 4801

Abstract

Read online

Recent studies have proposed methods for extracting latent sharp frames from a single blurred image. However, these methods still suffer from limitations in restoring satisfactory images. In addition, most existing methods are limited to decomposing a blurred image into sharp frames with a fixed frame rate. To address these problems, we present an Arbitrary Time Blur Decomposition Triple Generative Adversarial Network (ABDGAN) that restores sharp frames with flexible frame rates. Our framework plays a min–max game consisting of a generator, a discriminator, and a time-code predictor. The generator serves as a time-conditional deblurring network, while the discriminator and the label predictor provide feedback to the generator on producing realistic and sharp image depending on given time code. To provide adequate feedback for the generator, we propose a critic-guided (CG) loss by collaboration of the discriminator and time-code predictor. We also propose a pairwise order-consistency (POC) loss to ensure that each pixel in a predicted image consistently corresponds to the same ground-truth frame. Extensive experiments show that our method outperforms previously reported methods in both qualitative and quantitative evaluations. Compared to the best competitor, the proposed ABDGAN improves PSNR, SSIM, and LPIPS on the GoPro test set by 16.67%, 9.16%, and 36.61%, respectively. For the B-Aist++ test set, our method shows improvements of 6.99%, 2.38%, and 17.05% in PSNR, SSIM, and LPIPS, respectively, compared to the best competitive method.

Keywords