Journal of Lipid Research (Oct 1990)

Catabolism of leukotriene B5 in humans

  • C von Schacky,
  • C Fahrer,
  • S Fischer

Journal volume & issue
Vol. 31, no. 10
pp. 1831 – 1838

Abstract

Read online

Human neutrophils, enriched by dietary supplementation with eicosapentaenoic acid, form leukotriene (LT)B5 in addition to LTB4 upon stimulation. LTB5 is one order of magnitude less biologically active than the potent chemokinetic and chemoattractant LTB4. Catabolites of LTB5 have not yet been characterized in vitro and ex vivo. It is unknown whether catabolism of LTB5 interferes with catabolism of LTB4. This report describes catabolism of LTB5 to 20-OH-LTB5, which in turn is catabolized to 20-COOH-LTB5. The structures of the two catabolites were established by UV-absorbance, behavior on reverse-phase high-performance liquid chromatography, enzymatic analysis of human neutrophils, and gas chromatography-mass spectrometry. In vitro, formation of LTB4 was delayed and formation of its catabolites was depressed by exogenous eicosapentaenoic acid. By supplementing the diet of six volunteers with 5 g eicosapentaenoic acid/day for 7 days, eicosapentaenoic acid quadrupled in neutrophil phospholipid fatty acids. Consequently, LTB5, 20-OH-LTB5, and 20-COOH-LTB5 were detected ex vivo. In contrast to the findings in vitro, however, levels of LTB4, 20-OH-LTB4, and 20-COOH-LTB4 were unaltered by the dietary intervention. Thus, in vitro, but not ex vivo, addition of eicosapentaenoic acid, and subsequent formation of LTB5, impeded catabolism of proinflammatory LTB4.