Biology (Jun 2024)

The Response of Soil Respiration to Temperature and Humidity in the Thermokarst Depression Zone of the Headwater Wetlands of Qinghai Lake

  • Yahui Mao,
  • Kelong Chen,
  • Wei Ji,
  • Yanli Yang

DOI
https://doi.org/10.3390/biology13060437
Journal volume & issue
Vol. 13, no. 6
p. 437

Abstract

Read online

As the climate warms, the thickening of the active layer of permafrost has led to permafrost melting and surface collapse, forming thermokarst landforms. These changes significantly impact regional vegetation, soil physicochemical properties, and hydrological processes, thereby exacerbating regional carbon cycling. This study analyzed the relationship between soil respiration rate (Rs), soil temperature (T), and volumetric water content (VWC) in the thermokarst depression zone of the headwater wetlands of Qinghai Lake, revealing their influence on these soil parameters. Results showed a significant positive correlation between soil temperature and Rs (p p p 2 = 0.509) and under natural conditions (R2 = 0.414), while the humidity-driven model had lower explanatory power. Dual-factor models further improved explanatory power, slightly more so in the thermokarst depression zone. This indicates that temperature and humidity jointly drive Rs. Additionally, during the daytime, temperature had a more significant impact on Rs under natural conditions, while increased VWC inhibited Rs. At night, the positive correlation between Rs and temperature in the thermokarst depression zone increased significantly. The temperature sensitivity (Q10) values of Rs were 3.32 and 1.80 for the thermokarst depression zone and natural conditions, respectively, indicating higher sensitivity to temperature changes at night in the thermokarst depression zone. This study highlights the complexity of soil respiration responses to temperature and humidity in the thermokarst depression zone of Qinghai Lake’s headwater wetlands, contributing to understanding carbon cycling in wetland ecosystems and predicting wetland carbon emissions under climate change.

Keywords