Research in Diagnostic and Interventional Imaging (Jun 2023)

Effect of scan duration on CT perfusion values in metastases from renal cell carcinoma

  • Chaan S. Ng,
  • Adam G. Chandler,
  • Yanwen Chen,
  • Wei Wei,
  • Nizar M. Tannir,
  • Brian P. Hobbs

Journal volume & issue
Vol. 6
p. 100028

Abstract

Read online

Objective: CT perfusion (CTp) values are affected by CT scan acquisition duration (tacq); their reproducibility is adversely affected by uncertainty in their measurement. The objectives were to assess the effects of tacq on CTp parameter values in metastases from renal cell carcinoma (mRCC) in thoracic and abdominal locations. Materials and Methods: 131 CTp evaluations in 53 patients with mRCC were retrospectively analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and also hepatic arterial perfusion (HAP) and hepatic arterial fraction (HAF) for liver metastases and normal liver, with tacq from 25 to 590 s. Penalized piecewise polynomial regression (SPLINE) characterized functional relationships between CTp parameters and acquisition duration, tacq. Evidence for time-invariance was evaluated for each parameter at multiple time points by conducting inference on the fitted derivative to assess its proximity to zero as a function of acquisition time. Equivalence testing was implemented with three levels of confidence (low (20%), moderate (70%), high (95%)). Results: Systematic and non-systematic variability was observed for CTp parameter values with limited tacq. All parameters in all locations approached increasing stability with increasing tacq. PS, HAP and HAF required longer acquisition times than BF, BV and MTT to attain comparable levels of stability. Stabilization tended to require longer acquisition in liver than other tissues. tacq=380 s was required to obtain at least moderate level of confidence for all parameters and organs. Conclusion: Increasing tacq yields increasingly more stable CT perfusion parameters, and thereby better reproducibility.

Keywords