Scientific Reports (May 2024)

Enhancing cardiovascular risk prediction through AI-enabled calcium-omics

  • Ammar Hoori,
  • Sadeer Al-Kindi,
  • Tao Hu,
  • Yingnan Song,
  • Hao Wu,
  • Juhwan Lee,
  • Nour Tashtish,
  • Pingfu Fu,
  • Robert Gilkeson,
  • Sanjay Rajagopalan,
  • David L. Wilson

DOI
https://doi.org/10.1038/s41598-024-60584-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Whole-heart coronary calcium Agatston score is a well-established predictor of major adverse cardiovascular events (MACE), but it does not account for individual calcification features related to the pathophysiology of the disease (e.g., multiple-vessel disease, spread of the disease along the vessel, stable calcifications, numbers of lesions, and density). We used novel, hand-crafted calcification features (calcium-omics); Cox time-to-event modeling; elastic net; and up and down synthetic sampling methods for imbalanced data, to assess MACE risk. We used 2457 CT calcium score (CTCS) images enriched for MACE events from our large no-cost CLARIFY program (ClinicalTrials.gov Identifier: NCT04075162). Among calcium-omics features, numbers of calcifications, LAD mass, and diffusivity (a measure of spatial distribution) were especially important determinants of increased risk, with dense calcification (> 1000HU, stable calcifications) associated with reduced risk Our calcium-omics model with (training/testing, 80/20) gave C-index (80.5%/71.6%) and 2-year AUC (82.4%/74.8%). Although the C-index is notoriously impervious to model improvements, calcium-omics compared favorably to Agatston and gave a significant difference (P < 0.001). The calcium-omics model identified 73.5% of MACE cases in the high-risk group, a 13.2% improvement as compared to Agatston, suggesting that calcium-omics could be used to better identity candidates for intensive follow-up and therapies. The categorical net-reclassification index was NRI = 0.153. Our findings from this exploratory study suggest the utility of calcium-omics in improved risk prediction. These promising results will pave the way for more extensive, multi-institutional studies of calcium-omics.