Remote Sensing (Apr 2024)

Vertical Features of Volatile Organic Compounds and Their Potential Photochemical Reactivities in Boundary Layer Revealed by In-Situ Observations and Satellite Retrieval

  • Siqi Yang,
  • Bin Zhu,
  • Shuangshuang Shi,
  • Zhuyi Jiang,
  • Xuewei Hou,
  • Junlin An,
  • Li Xia

DOI
https://doi.org/10.3390/rs16081403
Journal volume & issue
Vol. 16, no. 8
p. 1403

Abstract

Read online

Based on in-situ vertical observations of volatile organic compounds (VOCs) in the lower troposphere (0–1.0 km) in Nanjing, China, during the summer and autumn, we analyzed the VOCs vertical profiles, diurnal variation, and their impact factors in meteorology and photochemistry. The results showed that almost all the concentrations of VOC species decreased with height, similar to the profiles of primary air pollutants, as expected. However, we found the ratios of inactive species (e.g., acetylene) and secondary VOCs (e.g., ketones and aldehydes) in total VOCs (TVOCs) increased with height. Combined with satellite-retrieved data, we found the average HCHO tropospheric column concentrations were 2.0 times higher in the summer than in the autumn. While the average of tropospheric NO2 column concentrations was 3.0 times lower in the summer than in the autumn, the seasonal differences in the ratio of oxygenated VOCs (OVOCs) to NO2 (e.g., HCHO/NO2) shown in TROPOMI satellite-retrieved data were consistent with in-situ observations (e.g., acetone/NO2). On average, during autumn daytime, the mixing layer (ML), stable boundary layer (SBL), and residual layer (RL) had OH loss rates (LOH) of 6.9, 6.3, and 5.5 s−1, respectively. The LOH of alkenes was the largest in the ML, while the LOH of aromatics was the largest in the SBL and RL. At autumn night, the NO3 loss rates (LNO3) in the SBL and RL were 2.0 × 10−2 and 1.6 × 10−2 s−1, respectively, and the LNO3 of aromatics was the largest in the SBL and RL. In the daytime of summer, the LOH of VOCs was ~40% lower than that in autumn in all layers, while there was no significant difference in LNO3 at night between the two seasons. This study provides data support and a theoretical basis for VOC composite pollution control in the Nanjing region.

Keywords