Critical Care Explorations (Oct 2023)
Omega-3 Fatty Acids as Antiarrhythmic Drugs: Upstream Target Modulators Affecting Acute and Long-Term Pathological Alterations in Cardiac Structure and Function
Abstract
OBJECTIVES:. Postoperative atrial fibrillation (POAF) is a common complication in the acute care period following coronary artery bypass grafting (CABG) surgery that is associated with significant morbidity and mortality in both short-term and long-term settings. Recently, the Vaughn Williams Classification of antiarrhythmic agents, first proposed in 1975 and widely viewed as the authoritative description of their electrophysiologic actions, was updated and notably omega-3 fatty acids (Ω-3 fatty acids) have been included in class VII, described as “upstream target modulators,” to mitigate pathological structural and electrophysiological remodeling changes in the aged and/or injured myocardium. DATA SOURCES:. A PubMed literature search was performed. STUDY SELECTION:. Studies examining the significance of complications in patients undergoing isolated CABG surgery were selected for inclusion. DATA EXTRACTION:. Relevant data were qualitatively assessed and narratively summarized. DATA SYNTHESIS:. POAF occurs in approximately 30% of patients, and inflammation from chronic coronary artery disease preoperatively, as well as acute atrial inflammation from surgery postoperatively are the leading causes. Inflammation underlies its pathophysiology; therefore Ω-3 fatty acids not only exhibit antiarrhythmic properties but are an effective anti-inflammatory treatment that may reduce the clinical risks of POAF. CONCLUSIONS:. At present no effective prophylaxis is available to address POAF following CABG surgery. Clinical approaches that focus on the inflammatory response in this setting may optimize the response to treatment. The current literature supports the hypothesis that Ω-3 fatty acids may acutely reduce the inflammatory response via favorable alterations in the metabolism of prostaglandins and leukotrienes (eicosanoids) and specialized pro-resolving mediators.