International Journal of Computational Intelligence Systems (Jan 2021)
An Intuitionistic Fuzzy Time Series Model Based on New Data Transformation Method
Abstract
Traditional time series methods can predict seasonal problems, but not problems with transferred linguistic data. Thus, a forecasting method for such problems is required. However, existing intuitionistic fuzzy time series forecasting methods lack persuasiveness in determining the degree of hesitation and the lengths of intervals. Hence, this research is mainly to explore how to decide the degree of hesitation for each interval for intuitionistic fuzzy time series. This paper proposes the weighted intuitionistic fuzzy time series model based on the Nth quantile discretization approach (NQDA). The proposed model can decide the appropriate number, interval length, degree of hesitation, and membership and nonmembership functions of linguistic values on the basis of the training data. In the experimental section, the forecasts of several data sets are made for model validation. Results indicate that the proposed model can be used to obtain forecasts for other time-related data sets.
Keywords