Animal (Jul 2023)

A framework to estimate the environmentally attainable intake of dairy cows in constraining environments

  • J.F. Ramirez-Agudelo,
  • L. Puillet,
  • N.C. Friggens

Journal volume & issue
Vol. 17, no. 7
p. 100799

Abstract

Read online

Most intake models for dairy cows have been developed to make predictions under normal conditions, in which animals can meet their nutritional requirements. To estimate intake under constraining conditions, i.e. when intake is defined by the environment and not by the animal’s requirements, it is necessary to develop models that take into account environmentally driven effects. The aim of this work was to develop a framework to represent the links between environmental variables (food quality and quantity, as well as ambient temperature, season, and farm type) and intake. The framework integrates time as the major constraint on intake and proposes the environmentally attainable intake (EAI) as the product of the Eating Rate (ER) and the Eating Time (ET). ER is the maximum sustainable rate (gr DM/min) at which animals bite the food, and ET is the daily time (min/d) that animals have to eat. The architecture of the framework is easily extensible to add constraints such as predation pressure, reproductive costs, competition, parasitism, or diseases. Data from grazing and indoor dairy farms were used to test the usability of the framework. The results show that a time use-based framework is a reliable approach to estimate intake considering environmental variables with minimum use of animals’ characteristics. In conclusion, a high-level framework of feeding behaviour, that captures the main underlying mechanisms of intake in constrained environments, can be used to predict the EAI and the effects of the environment on animal performance.

Keywords