Haematologica (Apr 2013)
Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication
Abstract
MicroRNA have been demonstrated to be deregulated in multiple myeloma. We have previously reported that miR-214 is down-regulated in multiple myeloma compared to in normal plasma cells. The functional role of miR-214 in myeloma pathogenesis was explored by transfecting myeloma cell lines with synthetic microRNA followed by gene expression profiling. Putative miR-214 targets were validated by luciferase reporter assay. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this microRNA, gene expression profiling of the H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. miR-214 directly down-regulated the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-untranslated regions. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation of CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, MiR-214 functions as a tumor suppressor in myeloma by positive regulation of p53 and inhibition of DNA replication.