Scientific Reports (Jul 2017)

Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light

  • Rikizo Ikuta,
  • Shota Nozaki,
  • Takashi Yamamoto,
  • Masato Koashi,
  • Nobuyuki Imoto

DOI
https://doi.org/10.1038/s41598-017-05008-6
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.