Biomedicine & Pharmacotherapy (Jan 2022)
Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats
Abstract
Hyperglycemia and hyperlipidemia-arbitrated mitochondrial oxidative insult is key reason for cardiac dysfunction and cardiomyopathy. Sinapic acid (SA) is a hydroxycinnamic acid (a polyphenolic acid) present in multiple plants and possesses several pharmacological activities. In this study, we examined the cardio protective effects of SA on streptozotocin (STZ)-induced cardiac insults. STZ and both STZ induced diabetes and normal control rats were administered with 20 and 40 mg/kg SA for 12 weeks. STZ rats demonstrated hyperglycemia and hyperlipidemia. Additionally, STZ administered rats exhibited various histological changes in the cardiac muscles and significantly enhanced CK-MB and LDH. The significant enhancement of oxidative stress, inflammation, and apoptotic markers, and the capacity to curb oxidative stress was significantly abridged in the STZ induced diabetic heart. Chronic treatment with SA (20–40 mg/kg) ameliorated the increased level of glucose, lipid, and cardiac function markers and curtailed histological changes in the cardiac muscles. Chronic treatment also repressed inflammation, oxidative stress and apoptosis thereby and restoring antioxidant defenses in the myocardium of STZ induced diabetic rats. STZ induced cardiac dysfunction and cardiomyopathy by promoting inflammation and oxidative stress. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy via improvement of hyperglycemia, hyperlipidemia, inflammation, oxidative stress, and apoptosis. Thus, SA possesses possible therapeutic value for the prevention of diabetic cardiac dysfunction and cardiomyopathy via the NRF2/HO-1 and NF-κB pathways.