BMC Ecology and Evolution (Feb 2022)

Reevaluating scorpion ecomorphs using a naïve approach

  • Pedro Coelho,
  • Antigoni Kaliontzopoulou,
  • Pedro Sousa,
  • Mark Stockmann,
  • Arie van der Meijden

DOI
https://doi.org/10.1186/s12862-022-01968-0
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Ecomorphs create the opportunity to investigate ecological adaptation because they encompass organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions have been empirically assigned to ecomorphs based on the characteristic morphologies that rock, sand, vegetation, underground, and surface dwellers assume. This study aims to independently test the existence of scorpion ecomorphs by quantifying the association between their morphology and ecology across 61 species, representing 14 families of the Scorpiones order. Results Without a priori categorization of species into ecomorphs, we identified four groups based on microhabitat descriptors, which reflect how scorpion ecospace is clustered. Moreover, these microhabitat groups, i.e., ecotypes, have significantly divergent morphologies; therefore, they represent ecomorphs. These ecomorphs largely correspond with the ones previously described in the literature. Therefore, we retained the names Lithophilous, Psammophilous, and Pelophilous, and proposed the name Phytophilous for vegetation dwellers. Finally, we sought to map the morphology-ecology association in scorpions and found that the morphological regions most tightly associated with ecology are at the extremities. Moreover, the major trend in ecomorphological covariation is that longer walking legs and relatively slender pedipalps (pincers) are associated with sandy microhabitats, while the inverse morphological proportions are associated with rocky microhabitats. Conclusions Scorpion ecomorphs are validated in a naïve approach, from ecological descriptors and whole body anatomy. This places them on a more solid quantitative footing for future studies of ecological adaptation in scorpions. Our results verify most of the previously defined ecomorphotypes and could be used as a current practice to understand the adaptive significance of ecological morphology.

Keywords