Remote Sensing (Dec 2020)
Damage Assessment of Rice Crop after Toluene Exposure Based on the Vegetation Index (VI) and UAV Multispectral Imagery
Abstract
Chemical spill accidents lead to environmental problems, especially for plants. Plant vegetation assessment is necessary after a chemical accident; however, conventional methods can be inaccurate and time-consuming. This study used the vegetation index (VI) extracted from unmanned aerial vehicle (UAV) multispectral imagery for crop damage assessment after chemical exposure. The chemical accident simulations were conducted by exposure of rice at five growth stages to four levels of toluene. The VI was measured at five days after damage and 67 days after planting. Physiological characteristics (chlorophyll content and grain yield) were also measured. As a result, the mean normalized difference VI (NDVI) of toluene-exposed rice was significantly decreased with respect to toluene exposure concentration increases at most growth stages. Recovery after toluene exposure was lower in rice exposed to higher concentrations at the earlier growth stages. The chlorophyll content and grain yield were also decreased after toluene exposure with respect to increasing toluene concentrations and showed positive correlations with the NDVI. It indicates that the NDVI is capable of reflecting the plant response to chemical exposure. Thus, the results demonstrated that the VI based on UAV multispectral imagery is feasible as an alternative for crop monitoring, damage assessment after chemical exposure, and yield prediction.
Keywords