Pharmaceutics (Sep 2024)
Pharmacokinetics of Piperacillin–Tazobactam in Critically Ill Patients with Open Abdomen and Vacuum-Assisted Wound Closure: Dosing Considerations Using Monte Carlo Simulation
Abstract
Background: Open abdomen with vacuum-assisted wound closure therapy (OA/VAC) is frequently used in critically ill patients although the impact of OA/VAC on antibiotics pharmacokinetics (PK) remains unknown. We thus aimed to characterize the PK of piperacillin–tazobactam (PTZ) in critically ill patients with OA/VAC and assess the optimal dosing regimens based on pharmacodynamics (PD) target attainment. Methods: Over a 15-month study period, 45 patients with OA/VAC treated with PTZ administered continuously and adapted to 24 h creatinine clearance (CLCR) underwent measurements of free concentrations in their plasma, urine, VAC exudate, and peritoneal fluid. Population PK modeling was performed considering the effect of covariates, and Monte Carlo simulations were employed to determine the probability of target attainment (PTA) for the PK/PD targets (100% fT > 16 mg/L) in the plasma and at the peritoneal site at steady state. Results: Piperacillin concentrations were described using a two-compartment model, with age and total body weight as significant covariates for central volume of distribution (V1) and estimated renal function for clearance (CL). Tazobactam concentrations were described using a two-compartment model with estimated renal function as a significant covariate. The central volume of distributions V1 of piperacillin and tazobactam were 21.2 and 23.2 L, respectively. The VAC-induced peritoneal clearance was negligible compared to renal clearance. Most patients achieved the desirable PK/PD target when using a CLCR-pondered PTZ dosing regimen from 12 g/1.5 g/day to 20 g/2.5 g/day. Conclusions: Despite a wide inter-individual variability, the influence of OA/VAC on piperacillin and tazobactam PK parameters is not straightforward. The use of a CLCR-pondered PTZ dosing regimen from 12 g/1.5 g/day to 20 g/2.5 g/day is needed to reach a PTA > 85%.
Keywords