Materials (Mar 2016)

Synthesis, Characterization and Cytotoxicity of Novel Multifunctional Fe3O4@SiO2@GdVO4:Dy3+ Core-Shell Nanocomposite as a Drug Carrier

  • Bo Li,
  • Huitao Fan,
  • Qiang Zhao,
  • Congcong Wang

DOI
https://doi.org/10.3390/ma9030149
Journal volume & issue
Vol. 9, no. 3
p. 149

Abstract

Read online

In this study, multifunctional Fe3O4@SiO2@GdVO4:Dy3+ nanocomposites were successfully synthesized via a two-step method. Their structure, luminescence and magnetic properties were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The results indicated that the as-prepared multifunctional composites displayed a well-defined core-shell structure. The composites show spherical morphology with a size distribution of around 360 nm. Additionally, the composites exhibit high saturation magnetization (20.40 emu/g) and excellent luminescence properties. The inner Fe3O4 cores and the outer GdVO4:Dy3+ layers endow the composites with good responsive magnetic properties and strong fluorescent properties, which endow the nanoparticles with great potential applications in drug delivery, magnetic resonance imaging, and marking and separating of cells in vitro.

Keywords