Journal of Integrative Agriculture (May 2016)

Transgenic restorer rice line T1c-19 with stacked cry1C*/bar genes has low weediness potential without selection pressure

  • Yao HUANG,
  • Ji-kun LI,
  • Sheng QIANG,
  • Wei-min DAI,
  • Xiao-ling SONG

Journal volume & issue
Vol. 15, no. 5
pp. 1046 – 1058

Abstract

Read online

Stacked (insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63 (herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1 (used as a control) were compared for agronomic performance under field conditions without the relevant selection pressures. Agronomic traits (plant height, tiller number, and aboveground dry biomass), reproductive ability (pollen viability, panicle length, and filled grain number of main panicles, seed set, and grain yield), and weediness characteristics (seed shattering, seed overwintering ability, and volunteer seedling recruitment) were used to assess the potential weediness without selection pressure of stacked transgene rice T1c-19. In wet direct-seeded and transplanted rice fields, T1c-19 and its receptor MH63 performed similarly regarding vegetative growth and reproductive ability, but both of them were significantly inferior to the control. T1c-19 did not display weed characteristics; it had weak overwintering ability, low seed shattering and failed to establish volunteers. Exogenous insect and herbicide resistance genes did not confer competitive advantage to transgenic rice T1c-19 grown in the field without the relevant selection pressures.

Keywords