International Journal of Group Theory (Jun 2012)
The automorphism group for p-central p-groups
Abstract
A p-group is p-central if the central quotient has exponent p, and G is (p^2)-abelian if (xy)^{p^{2}}=(x^{p^2})(y^{p^2}) for all x,y in G . We prove that for G a finite (p^2)-abelian p-central p-group, excluding certain cases, the order of G divides the order of Aut(G) .