Science and Engineering of Composite Materials (Jan 2019)

Weight reduction of a carbon fibre composite wheel

  • Czypionka Stefan,
  • Kienhöfer Frank

DOI
https://doi.org/10.1515/secm-2019-0018
Journal volume & issue
Vol. 26, no. 1
pp. 338 – 346

Abstract

Read online

The wheel of a passenger vehicle must be designed to be safe and light. Despite the tremendous potential of carbon fibre as an automotive material due to high strength and low weight, the prevalence of carbon fibre reinforced plastics (CFRPs) in vehicle wheels is limited. Manufacturing and testing CFRP prototypes is expensive. Thus it is advantageous to develop simulation models for composite weight reduction. The simulation models can provide insight into how lighter CFRP wheels can be designed. This study presents the design development of a CFRP wheel for a high-performance roadster; the CFRP wheel is offered by an automotive manufacturer as a high-performance option instead of aluminium wheels. Finite element (FE) simulations were initially conducted assuming an isotropic material. This initial model was used to eliminate stress concentrations and to design and manufacture an initial CFRP wheel. The CFRP wheel weight is 6.8 kg as compared to the original aluminium wheel which weighs 8.1 kg. This initial design passed the dynamic cornering fatigue test (the most stringent strength test for wheels). Thereafter the wheel was instrumented with strain gauges and a bending moment was applied to the hub using a custom-built test rig. The test rig produced a static load equivalent to the dynamic cornering fatigue test (in which the applied bending moment varies sinusoidally). The test rig allowed for the deflection of the load arm to be measured. The comparison of the experimentally measured strains and an FE model which includes the CFRP laminate properties showed good agreement. Two alternative laminate options were simulated using the FE model. These showed both an increase in stiffness and a calculated weight reduction. This study shows that an aluminium wheel for a high-performance roadster can be redesigned using CFRP to be 16% lighter and using a FE model a further 152 g weight reduction is possible (18% weight reduction in total when compared to the aluminium wheel).

Keywords