Applied Sciences (Aug 2021)

Applying NMR <i>T</i><sub>2</sub> Spectral Parameters in Pore Structure Evaluation—An Example from an Eocene Low-Permeability Sandstone Reservoir

  • Yan Lu,
  • Keyu Liu,
  • Ya Wang

DOI
https://doi.org/10.3390/app11178027
Journal volume & issue
Vol. 11, no. 17
p. 8027

Abstract

Read online

The Eocene low-permeability sandstone reservoirs in the Dongying Depression, Bohai Bay Basin, China host a significant amount of oil reserves. The development of the reservoirs has been hampered by our inability to understand the complex and heterogeneous pore structures of the reservoirs. In this study, the pore systems, pore sizes, pore connectivity, and movable fluid distribution of the Eocene Shahejie Formation (Es4) sandstone reservoirs were investigated using an integrated analysis of optical and scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR). The full-range pore structures of the Es4 sandstone reservoirs were evaluated by using NMR experiments. Various NMR T2 spectral parameters suitable for describing the pore structures and movable fluid distribution were extracted through morphological and statistical analysis of NMR T2 spectra. In combination with corresponding MICP data and petrophysical properties, we have demonstrated the reliability and robustness of the T2 spectral parameters for pore structure characterization. Four types of pore structures (I, II, III, and IV) were distinguished from the NMR T2 spectral parameters in association with other petrophysical properties and macroscopic behaviors. We have demonstrated the effectiveness of using the NMR T2 spectral parameters to characterize and classify micropore structures, which may be applied to effectively evaluate and predict low-permeability reservoir quality.

Keywords