PLoS ONE (Jan 2012)

Deregulation of type I IFN-dependent genes correlates with increased susceptibility to cytomegalovirus acute infection of dicer mutant mice.

  • Eleonore Ostermann,
  • Lee Tuddenham,
  • Cecile Macquin,
  • Ghada Alsaleh,
  • Julie Schreiber-Becker,
  • Melanie Tanguy,
  • Seiamak Bahram,
  • Sebastien Pfeffer,
  • Philippe Georgel

DOI
https://doi.org/10.1371/journal.pone.0043744
Journal volume & issue
Vol. 7, no. 8
p. e43744

Abstract

Read online

Regulation of gene expression by microRNAs (miRNAs) is now considered as an essential mechanism for cell development and homeostasis. Indeed, numerous studies have reported that modulating their expression, maturation, or activity can affect cell survival, identity or activation. In particular, miRNAs are key players in the tight regulation of signaling cascades, and as such, they appear as perfectly suited immunomodulators. Several immune-related processes, including inflammation, have recently been demonstrated to require specific miRNAs. In addition, the discovery of herpesvirus-encoded miRNAs has reinforced this assumption. To decipher the potential roles of miRNAs in innate antiviral immune response, we developed an in vivo model based on the inoculation of mouse cytomegalovirus (MCMV) in mice. Furthermore, we exploited a mouse line carrying a hypomorphic mutation in the Dicer gene to visualize the impact of impaired miRNA biogenesis upon the anti-MCMV response. Our data indicate that miRNAs are important actors in mounting an efficient response against herpesviruses. We suggest that a rapid and transient interferon response following viral infection requires miRNA-dependent repressor release. In addition, our in vivo efforts identified several miRNA targets, thus providing a conceptual framework for future analyzes on the regulation of specific actors involved in the Type I interferon pathway.