Leida xuebao (Feb 2024)

OFDM Waveform Design for Joint Radar-communication Based on Data Distortion

  • Yan LIU,
  • Xianrong WAN,
  • Jianxin YI

DOI
https://doi.org/10.12000/JR23205
Journal volume & issue
Vol. 13, no. 1
pp. 160 – 173

Abstract

Read online

Orthogonal Frequency Division Multiplexing (OFDM) waveform design is one of the key physical layer technologies for achieving joint radar-communication. OFDM waveforms usually have issues with high Peak to Average Power Ratio (PAPR) and high waveform autocorrelation sidelobe levels. This paper proposes an integrated waveform design method based on data distortion to address the communication rate degradation problem of existing joint PAPR and autocorrelation sidelobe reduction methods. The paper also takes the Error Vector Magnitude (EVM) of communication data as one of the optimization objectives, reducing the communication bit error rate caused by data distortion. Firstly, an optimization model was constructed to minimize the Integrated Sidelobe Level Ratio (ISLR) and EVM under PAPR constraints. Secondly, based on the characteristics of the modulation constellation, the multi-objective high-dimensional non-convex optimization problem is transformed into two single objective optimization subproblems by using the data distortion of outer constellation modulation and all modulation data distortion. Convex relaxation operation and Alternating Direction Method of Multipliers (ADMM) are respectively used to solve the simplified subproblems, resulting in low ISLR waveform and low EVM waveform under PAPR constraint. The simulation results show that the integrated waveform designed by the proposed method can meet the requirements of PAPR, and has good sensing and communication performance.

Keywords