APL Materials (Oct 2020)

Electrically driven transient and permanent phase transformations in highly strained epitaxial BiFeO3 thin films

  • Hyeon Jun Lee,
  • Jeongyong Kim,
  • Seung Hyun Hwang,
  • Hyeokmin Choe,
  • Semen Gorfman,
  • Yeong-Jae Heo,
  • Su Yong Lee,
  • Pierre-Eymeric Janolin,
  • Igor Kornev,
  • Tobias U. Schülli,
  • Carsten Richter,
  • Joo-Hyoung Lee,
  • Ullrich Pietsch,
  • Chan-Ho Yang,
  • Ji Young Jo

DOI
https://doi.org/10.1063/5.0025673
Journal volume & issue
Vol. 8, no. 10
pp. 101110 – 101110-7

Abstract

Read online

Electric-field-driven phase transformation phenomena in multiferroic BiFeO3 are directly linked to the functionalities of electronic devices based on multiferroic materials. Understanding how the transformation evolves at the nanoscale under the influence of an electric field will provide fascinating insights into key parameters that utilize the transformation features. Here, we report both the electric-field-driven transient and permanent phase transformations in highly strained BiFeO3 thin films and their transformation dynamics at the nanoscale. We found that two distinct transient and permanent phase transformations were triggered below and above a coercive voltage of the polymorphic phase, indicating that ferroelectric polarization switching could promote permanent phase transformations. We also found that the transient transformations evolve via complex phase boundary motions between the coexisting phases, whereas permanent transformations occurred via nucleation of the other phases.