Journal of Science: Advanced Materials and Devices (Sep 2024)

Micrometric thermal electronic nose able to detect and quantify individual gases in a mixture

  • Matteo Tonezzer,
  • Michele Ricci,
  • Nguyen X. Thai,
  • Hugo Nguyen,
  • Nguyen V. Duy,
  • Nguyen D. Hoa

Journal volume & issue
Vol. 9, no. 3
p. 100760

Abstract

Read online

Recent urbanization and environmental problems urge for networks of sensors that can monitor air quality. Small, inexpensive, and smart sensors are one of the key components enabling the realization of such networks. Chemoresistive sensors are the ideal candidate, but they greatly lack selectivity, and for this reason, they are usually combined in arrays to create electronic noses, whose dimensions, however, make them not miniaturizable and cannot be integrated into portable devices. To overcome this inconvenience, we present a thermal electronic nose consisting of identical resistive sensors working at different temperatures so that the whole device is simple to make and tiny. The device contains two sensor arrays based on tin oxide nanowires decorated with Ag and Pt nanoparticles, respectively. The five sensors in each array are identical, but their response is differentiated by different temperatures locally generated by an on-chip integrated heater. This innovative approach allows the tiny array of five sensors together with the integrated heater to occupy only approximately 50 × 200 μm2 and consume only 120 μW. The tiny and portable device can estimate the concentration of H2 and NH3 in a mixture with a root mean square error of 6.1 ppm and 13.3 ppm, respectively, and it still works well after two months. The performance analysis of the double partial least squares regression used for concentration estimation also allows for feedback on which sensors are the most sensitive to which gas so that the electronic nose can be engineered for specific applications using the most suitable sensors. The size of the thermal electronic nose allows it to be integrated into portable and wearable devices, and its performance makes it suitable for any gas detection application. For example, a smartphone with an integrated sensor could carry out breath analysis and act as medical pre-screening or be used to evaluate the freshness of agri-food products in a rapid and non-invasive way.

Keywords