Remote Sensing (Mar 2024)

TAG-Net: Target Attitude Angle-Guided Network for Ship Detection and Classification in SAR Images

  • Dece Pan,
  • Youming Wu,
  • Wei Dai,
  • Tian Miao,
  • Wenchao Zhao,
  • Xin Gao,
  • Xian Sun

DOI
https://doi.org/10.3390/rs16060944
Journal volume & issue
Vol. 16, no. 6
p. 944

Abstract

Read online

Synthetic aperture radar (SAR) ship detection and classification has gained unprecedented attention due to its important role in maritime transportation. Many deep learning-based detectors and classifiers have been successfully applied and achieved great progress. However, ships in SAR images present discrete and multi-centric features, and their scattering characteristics and edge information are sensitive to variations in target attitude angles (TAAs). These factors pose challenges for existing methods to obtain satisfactory results. To address these challenges, a novel target attitude angle-guided network (TAG-Net) is proposed in this article. The core idea of TAG-Net is to leverage TAA information as guidance and use an adaptive feature-level fusion strategy to dynamically learn more representative features that can handle the target imaging diversity caused by TAA. This is achieved through a TAA-aware feature modulation (TAFM) module. It uses the TAA information and foreground information as prior knowledge and establishes the relationship between the ship scattering characteristics and TAA information. This enables a reduction in the intra-class variability and highlights ship targets. Additionally, considering the different requirements of the detection and classification tasks for the scattering information, we propose a layer-wise attention-based task decoupling detection head (LATD). Unlike general deep learning methods that use shared features for both detection and classification tasks, LATD extracts multi-level features and uses layer attention to achieve feature decoupling and select the most suitable features for each task. Finally, we introduce a novel salient-enhanced feature balance module (SFB) to provide richer semantic information and capture the global context to highlight ships in complex scenes, effectively reducing the impact of background noise. A large-scale ship detection dataset (LSSDD+) is used to verify the effectiveness of TAG-Net, and our method achieves state-of-the-art performance.

Keywords