Pharmaceutics (Sep 2022)
Glu-Urea-Lys Scaffold Functionalized Superparamagnetic Iron Oxide Nanoparticles Targeting PSMA for In Vivo Molecular MRI of Prostate Cancer
Abstract
The prostate specific membrane antigen (PSMA), extensively overexpressed on prostate cancer (PCa) cell surface, has been validated as a diagnostic biomarker for PCa. However, insufficient attention has been paid to the development of PSMA-specific probes loaded with small chemical molecules for the in vivo molecular imaging of PCa. In this study, we innovatively labelled superparamagnetic iron oxide nanoparticles with a PSMA-targeting Glu-Urea-Lys scaffold. An optimized synthetic route was developed to offer a physiochemically stable probe. The probe demonstrated high binding affinity (0.38 ± 0.08 μg(Fe)/mL) and binding specificity to PSMA expressed on prostate cancer cell surface in vitro. In a xenograft PCa mouse model, significant negative contrast of the implanted prostate cancer xenograft could be specifically observed by MRI 6 h after tail vein injection of the tracer (Fe, 20 mg/kg), exhibiting its potential to exclusively enhance magnetic resonance detection of PCa.
Keywords