Physical Review X (Sep 2015)

Nonthermal Melting of Néel Order in the Hubbard Model

  • Karsten Balzer,
  • F. Alexander Wolf,
  • Ian P. McCulloch,
  • Philipp Werner,
  • Martin Eckstein

DOI
https://doi.org/10.1103/PhysRevX.5.031039
Journal volume & issue
Vol. 5, no. 3
p. 031039

Abstract

Read online Read online

We study the unitary time evolution of antiferromagnetic order in the Hubbard model after a quench starting from the perfect Néel state. In this setup, which is well suited for experiments with cold atoms, one can distinguish fundamentally different pathways for melting of long-range order at weak and strong interaction. In the Mott insulating regime, melting of long-range order occurs due to the ultrafast transfer of energy from charge excitations to the spin background, while local magnetic moments and their exchange coupling persist during the process. The latter can be demonstrated by a local spin-precession experiment. At weak interaction, local moments decay along with the long-range order. The dynamics is governed by residual quasiparticles, which are reflected in oscillations of the off-diagonal components of the momentum distribution. Such oscillations provide an alternative route to study the prethermalization phenomenon and its influence on the dynamics away from the integrable (noninteracting) limit. The Hubbard model is solved within nonequilibrium dynamical mean-field theory, using the density-matrix renormalization group as an impurity solver.