Journal of Materials Research and Technology (Mar 2023)

Effect of powder recycling on inclusion content and distribution in AISI 316L produced by L-PBF technique

  • A. Lanzutti,
  • F. Sordetti,
  • R. Montanari,
  • A. Varone,
  • E. Marin,
  • F. Andreatta,
  • S. Maschio,
  • E. Furlani,
  • M. Magnan,
  • E. Vaglio,
  • E. Pakhomova,
  • M. Sortino,
  • G. Totis,
  • L. Fedrizzi

Journal volume & issue
Vol. 23
pp. 3638 – 3650

Abstract

Read online

AISI 316 L stainless steel is widely used as material to produce components by means of additive manufacturing. To increase the circular economy, the powders are collected and re-used after the printing process, thus the effect of powder recycling on microstructure and properties of printed components is of the utmost importance. This work focused the attention on non-metallic inclusions by examining virgin and recycled powders, and products printed by using both types of powders in a laser powder bed fusion (L-PBF) process.Recycled powders exhibit an irregular shape due to fragmentation, spatters and satellites and, compared to the virgin ones, have a higher gas (O, H and C) content. Both powders contain non-metallic inclusions with a larger quantity in the recycled ones.The printed samples have a similar microstructure, however those produced by using recycled powders exhibit voids of larger size and a little greater amount of inclusions. XRD and EDS examinations of inclusions extracted from the metallic matrix showed that they consist of a mix of amorphous and crystalline silica. Large part of these particles are already present in virgin powders and only a minor part forms during repeated printing operations. Accordingly, the quality of virgin powders is the factor that mainly affects the inclusion content of printed products indicating that the powder production process is the most critical stage of the whole manufacturing process.

Keywords