Wearable Technologies (Jan 2024)

Design of a wearable shoulder exoskeleton robot with dual-purpose gravity compensation and a compliant misalignment compensation mechanism

  • John Atkins,
  • Dongjune Chang,
  • Hyunglae Lee

DOI
https://doi.org/10.1017/wtc.2024.1
Journal volume & issue
Vol. 5

Abstract

Read online

This paper presents the design and validation of a wearable shoulder exoskeleton robot intended to serve as a platform for assistive controllers that can mitigate the risk of musculoskeletal disorders seen in workers. The design features a four-bar mechanism that moves the exoskeleton’s center of mass from the upper shoulders to the user’s torso, dual-purpose gravity compensation mechanism located inside the four-bar’s linkages that supports the full gravitational loading from the exoskeleton with partial user’s arm weight compensation, and a novel 6 degree-of-freedom (DoF) compliant misalignment compensation mechanism located between the end effector and the user’s arm to allow shoulder translation while maintaining control of the arm’s direction. Simulations show the four-bar design lowers the center of mass by $ 11 $ cm and the kinematic chain can follow the motion of common upper arm trajectories. Experimental tests show the gravity compensation mechanism compensates gravitational loading within $ \pm 0.5 $ Nm over the range of shoulder motion and the misalignment compensation mechanism has the desired 6 DoF stiffness characteristics and range of motion to adjust for shoulder center translation. Finally, a workspace admittance controller was implemented and evaluated showing the system is capable of accurately reproducing simulated impedance behavior with transparent low-impedance human operation.

Keywords