Nature Communications (Jan 2020)

Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

  • Mohamed Marouf,
  • Pierre Machart,
  • Vikas Bansal,
  • Christoph Kilian,
  • Daniel S. Magruder,
  • Christian F. Krebs,
  • Stefan Bonn

DOI
https://doi.org/10.1038/s41467-019-14018-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.