F1000Research (Nov 2021)
RNfuzzyApp: an R shiny RNA-seq data analysis app for visualisation, differential expression analysis, time-series clustering and enrichment analysis [version 2; peer review: 1 approved, 2 approved with reservations]
Abstract
RNA sequencing (RNA-seq) is a widely adopted affordable method for large scale gene expression profiling. However, user-friendly and versatile tools for wet-lab biologists to analyse RNA-seq data beyond standard analyses such as differential expression, are rare. Especially, the analysis of time-series data is difficult for wet-lab biologists lacking advanced computational training. Furthermore, most meta-analysis tools are tailored for model organisms and not easily adaptable to other species. With RNfuzzyApp, we provide a user-friendly, web-based R shiny app for differential expression analysis, as well as time-series analysis of RNA-seq data. RNfuzzyApp offers several methods for normalization and differential expression analysis of RNA-seq data, providing easy-to-use toolboxes, interactive plots and downloadable results. For time-series analysis, RNfuzzyApp presents the first web-based, fully automated pipeline for soft clustering with the Mfuzz R package, including methods to aid in cluster number selection, cluster overlap analysis, Mfuzz loop computations, as well as cluster enrichments. RNfuzzyApp is an intuitive, easy to use and interactive R shiny app for RNA-seq differential expression and time-series analysis, offering a rich selection of interactive plots, providing a quick overview of raw data and generating rapid analysis results. Furthermore, its assignment of orthologs, enrichment analysis, as well as ID conversion functions are accessible to non-model organisms.