JBMR Plus (Aug 2022)

ERα Signaling in a Subset of CXCL12‐Abundant Reticular Cells Regulates Trabecular Bone in Mice

  • Julia M Scheffler,
  • Karin L Gustafsson,
  • Aidan Barrett,
  • Carmen Corciulo,
  • Christina Drevinge,
  • Alicia M Del Carpio Pons,
  • Piotr Humeniuk,
  • Cecilia Engdahl,
  • Jan‐Åke Gustafsson,
  • Claes Ohlsson,
  • Hans Carlsten,
  • Marie K. Lagerquist,
  • Ulrika Islander

DOI
https://doi.org/10.1002/jbm4.10657
Journal volume & issue
Vol. 6, no. 8
pp. n/a – n/a

Abstract

Read online

ABSTRACT Estrogen has pronounced effects on the immune system, which also influences bone homeostasis. In recent years, stromal cells in lymphoid organs have gained increasing attention as they not only support the regulation of immune responses but also affect bone remodeling. A conditional knockout mouse model where estrogen receptor alpha (ERα) is deleted in CCL19‐expressing stromal cells (Ccl19‐Cre ERαfl/fl mice) was generated and bone densitometry was performed to analyze the importance of stromal cell–specific ERα signaling on the skeleton. Results showed that female Ccl19‐Cre ERαfl/fl mice display reduced total bone mineral density and detailed X‐ray analyses revealed that ERα expression in CCL19‐expressing stromal cells is important for trabecular but not cortical bone homeostasis. Further analysis showed that the trabecular bone loss is caused by increased osteoclastogenesis. Additionally, the bone formation rate was reduced; however, the expression of osteoprogenitor genes was not altered. Analysis of the bone marrow stromal cell compartment revealed a deletion of ERα in a subgroup of CXCL12‐abundant reticular (CAR) cells resulting in increased secretion of the pro‐osteoclastogenic chemokine CXCL12. In conclusion, this study reveals the importance of ERα signaling in CAR cells for bone health. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Keywords