PLoS ONE (Jan 2019)

Maternal serum retinol, 25(OH)D and 1,25(OH)2D concentrations during pregnancy and peak bone mass and trabecular bone score in adult offspring at 26-year follow-up.

  • Chandima N D Balasuriya,
  • Tricia L Larose,
  • Mats P Mosti,
  • Kari Anne I Evensen,
  • Geir W Jacobsen,
  • Per M Thorsby,
  • Astrid Kamilla Stunes,
  • Unni Syversen

DOI
https://doi.org/10.1371/journal.pone.0222712
Journal volume & issue
Vol. 14, no. 9
p. e0222712

Abstract

Read online

BACKGROUND:Vitamin A and D deficiency is prevalent in pregnant women worldwide. Both vitamins are involved in fetal skeletal development. A positive association between maternal vitamin D levels and offspring bone mineral density (BMD) at adulthood has been observed. The impact of maternal vitamin A status in pregnancy on offspring peak bone mass remains unclear. METHOD AND FINDINGS:Forty-one mother-child pairs were recruited from a population-based prospective cohort study in Trondheim, Norway, where pregnant women were followed from gestational week 17. Their term-born infants were followed from birth (1986-88). Regression analyses were performed for vitamin A (retinol), 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] in maternal serum (gestational weeks 17, 33, 37) and cord blood. Offspring BMD and spine trabecular bone score (TBS), a measure of bone quality, were analyzed by dual x-ray absorptiometry at 26 years. Average levels during pregnancy of retinol, 25(OH)D and 1,25(OH)2D were 1.66 (0.32) μmol/L, 59.0 (20.6) nmol/L, and 251.3 (62.4) pmol/L, respectively. 1,25(OH)2D levels were similar in those with 25(OH)D levels 75 nmol/L. After adjustment for maternal age, BMI, smoking, and education, and offspring birth weight, maternal serum retinol was positively associated with offspring spine BMD [mean change 30.8 (CI 7.6, 54.0) mg/cm2 per 0.2 μmol/L retinol], and with offspring TBS, although non-significant (p = 0.08). No associations were found between maternal 25(OH)D and 1,25(OH)2D levels and offspring bone parameters. Vitamin levels in cord blood were not associated with offspring BMD or TBS. CONCLUSIONS:This is the first study to show an association between maternal vitamin A status and offspring peak bone mass. Our findings may imply increase future risk for osteoporotic fracture in offspring of mothers with suboptimal vitamin A level. No associations were observed between 25(OH)D and 1,25(OH)2D and offspring BMD.