Environmental Sciences Proceedings (Nov 2023)
Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based 2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and SoilGRIDs Data
Abstract
Ensuring food security in precision agriculture demands early prediction of corn yield in the USA at international, regional, and local levels. Accurate corn yield estimation can play a crucial role in averting famine by offering insights into food availability during the growing season. To address this, we propose a Concatenate-based 2D-CNN-BILSTM model that integrates Sentinel-1, Sentinel-2, and Soil GRIDS (global gridded soil information) data for corn yield estimation in Iowa State from 2018 to 2021. This approach utilizes Sentinel-2 features, including spectral bands (Blue, Green, Red, Red Edge 1/2/3, NIR, n-NIR, and SWIR 1/2), and vegetation indices (NDVI, LSWI, DVI, RVI, WDRVI, SAVI, VARIGREEN, and GNDVI), alongside Sentinel 1 features (VV, VH, difference VV, and VH, and RVI), and soil data (Silt, Clay, Sand, CEC, and pH) as initial inputs. To extract high-level features from this data each month, a dedicated 2D-CNN was designed. This 2D-CNN concatenates high-level features from the previous month with low-level features of the subsequent month, serving as input features for the model. Additionally, to incorporate single-time soil data features, another 2D-CNN was implemented. Finally, high-level features from soil, Sentinel-1, and Sentinel-2 data were concatenated and fed into a BILSTM layer for accurate corn yield prediction. Comparative analysis against random forest (RF), Concatenate-based 2D-CNN, and 2D-CNN models, using metrics like RMSE, MAE, MAPE, and the Index of Agreement, revealed the superiority of our model. It achieved an Index of Agreement of 84.67% with an RMSE of 0.698 t/ha. The Concatenate-based 2D-CNN model also performed well with an RMSE of 0.799 t/ha and an Index of Agreement of 72.71%. The 2D-CNN model followed closely with an RMSE of 0.834 t/ha and an Index of Agreement of 69.90%. In contrast, the RF model lagged with an RMSE of 1.073 t/ha and an Index of Agreement of 69.60%. Integration of Sentinel 1–2 and Soil-GRIDs data with the Concatenate-based 2D-CNN-BILSTM model significantly improved accuracy. Combining soil data with Sentinel 1–2 features reduced the RMSE by 16 kg and increased the Index of Agreement by 2.59%. This study highlighted the potential of advanced machine learning (ML)/deep learning (DL) models in achieving precise and reliable predictions, which could support sustainable agricultural practices and food-security initiatives.
Keywords