Machines (Oct 2022)
Improving Industrial Robot Positioning Accuracy to the Microscale Using Machine Learning Method
Abstract
Positioning accuracy in robotics is a key issue for the manufacturing process. One of the possible ways to achieve high accuracy is the implementation of machine learning (ML), which allows robots to learn from their own practical experience and find the best way to perform the prescribed operation. Usually, accuracy improvement methods cover the generation of a positioning error map for the whole robot workspace, providing corresponding correction models. However, most practical cases require extremely high positioning accuracy only at a few essential points on the trajectory. This paper provides a methodology for the online deep Q-learning-based approach intended to increase positioning accuracy at key points by analyzing experimentally predetermined robot properties and their impact on overall accuracy. Using the KUKA-YouBot robot as a test system, we perform accuracy measurement experiments in the following three axes: (i) after a long operational break, (ii) using different loads, and (iii) at different speeds. To use this data for ML, the relationships between the robot’s operating time from switching on, load, and positioning accuracy are defined. In addition, the gripper vibrations are evaluated when the robot arm moves at various speeds in vertical and horizontal planes. It is found that the robot’s degrees of freedom (DOFs) clearances are significantly influenced by operational heat, which affects its static and dynamic accuracy. Implementation of the proposed ML-based compensation method resulted in a positioning error decrease at the trajectory key points by more than 30%.
Keywords