PLoS ONE (Jan 2020)

Could climate trends disrupt the contact rates between Ixodes ricinus (Acari, Ixodidae) and the reservoirs of Borrelia burgdorferi s.l.?

  • Natalia Fernández-Ruiz,
  • Agustin Estrada-Peña

DOI
https://doi.org/10.1371/journal.pone.0233771
Journal volume & issue
Vol. 15, no. 5
p. e0233771

Abstract

Read online

This study addresses the modifications that future climate conditions could impose on the transmission cycles of Borrelia burgdorferi s.l. by the tick Ixodes ricinus in Europe. Tracking the distribution of foci of a zoonotic agent transmitted by vectors as climate change shapes its spatial niche is necessary to issue self-protection measures for the human population. We modeled the current distribution of the tick and its predicted contact rates with 18 species of vertebrates known to act as reservoirs of the pathogen. We approached an innovative way for estimating the possibility of permanent foci of Borrelia afzelii or Borrelia garinii tracking separately the expected spatial overlap among ticks and reservoirs for these pathogens in Europe. Environmental traits were obtained from MODIS satellite images for the years 2002-2017 (baseline) and projected on scenarios for the years 2030 and 2050. The ratio between MODIS baseline/current interpolated climatologies (WorldClim), and the ratio between MODIS-projected year 2050 with five climate change scenarios for that year (WorldClim) revealed no significant differences, meaning that projections from MODIS are reliable. Models predict that contact rates between the tick and reservoirs of either B. garinii or B. afzelii are spatially different because those have different habitats overlap. This is expected to promote different distribution patterns because of the different responses of both groups of reservoirs to environmental variables. Models for 2030 predict an increase in latitude, mainly in the circulation of B. garinii, with large areas of expected permanent contact between vector and reservoirs in Nordic countries and central Europe. However, climate projections for the year 2050 predict an unexpected scenario of contact disruption. Though large areas in Europe would be suitable for circulation of the pathogens, the predicted lack of niche overlap among ticks and reservoirs could promote a decrease in permanent foci. This development represents a proof-of-concept for the power of jointly modeling both the vector and reservoirs in a common framework. A deeper understanding of the unanticipated result regarding the year 2050 is needed.