Agriculture (Feb 2022)

Phylogenetic Analysis of Ryegrass (<i>Lolium rigidum</i>) Populations and the Proliferation of ALS Resistance in Saudi Arabia

  • Abdelhalim I. Ghazy,
  • Talal K. Al-Ateeq,
  • Eid I. Ibrahim,
  • Hussein M. Migdadi,
  • Kotb A. Attia,
  • Muhammad Javed,
  • Muhammad Altaf Khan,
  • Ibrahim Al-Ashkar,
  • Abdullah Al-Doss

DOI
https://doi.org/10.3390/agriculture12020290
Journal volume & issue
Vol. 12, no. 2
p. 290

Abstract

Read online

Morphological and simple sequence repeat (SSR) approaches were used to determine the genetic diversity of 29 ryegrass (Lolium rigidum) genotypes belonging to eight populations collected from several regions in Saudi Arabia. In this study, 50 in Silico-developed SSR markers derived from genomic and expressed sequence tag (EST) microsatellites were examined. Analysis of variance showed highly significant differences in all studied traits. Cluster analysis based on the morphological data of the 29 Lolium genotypes and using PAST (paleontological statistics) software was performed. According to the results, clustering was based mostly on genotype location. The sensitive genotypes for herbicide were clustered in one group. In addition, using EST-SSR markers, we observed the existence of a considerable number of genetic variations among Lolium genotypes. From these markers, only 31 produced reasonable amplification products. The results showed that 23 SSR markers revealed that 74.19% were polymorphic. The number of alleles detected per primer ranged from one to five in the primer LTC SSR1. The tested primers amplified 1434 bands across eight populations, with an average of 46.26 bands per primer. The polymorphism information content (PIC) values ranged from 0.11 to 0.76 for the primers LT EST-SSR5 and LTC SSR1. The unweighted pair group method with arithmetic average (UPGMA) clustering of the 29 genotypes representing eight populations was based essentially on their locations and herbicide-tolerance levels. Most of the populations formed into four clusters, together representing genotypes. Moreover, the tolerant populations were distinguished from the sensitive ones. The relationship between the genetic diversity and geographical source of Lolium rigidum populations of Saudi Arabia was revealed through this study. The results showed that the efficiency of developed SSR markers are transferable across species. They have been helpful to assess the genetic diversity of the ryegrass population as this could be applied to differentiate between tolerant and sensitive populations of ryegrass.

Keywords