Advanced Science (Feb 2022)

Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr3–Cs4PbBr6 Nanocrystals

  • Hyeonjung Kim,
  • Jong Hyun Park,
  • Kangyong Kim,
  • Dongryeol Lee,
  • Myoung Hoon Song,
  • Jongnam Park

DOI
https://doi.org/10.1002/advs.202104660
Journal volume & issue
Vol. 9, no. 5
pp. n/a – n/a

Abstract

Read online

Abstract Although metal halide perovskites are candidate high‐performance light‐emitting diode (LED) materials, blue perovskite LEDs are problematic: mixed‐halide materials are susceptible to phase segregation and bromide‐based perovskite quantum dots (QDs) have low stability. Herein, a novel strategy for highly efficient, stable cesium lead bromide (CsPbBr3) QDs via in situ surface reconstruction of CsPbBr3–Cs4PbBr6 nanocrystals (NCs) is reported. By controlling precursor reactivity, the ratio of CsPbBr3 to Cs4PbBr6 NCs is successfully modulated. A high photoluminescence quantum yield (PLQY) of >90% at 470 nm is obtained because octahedron CsPbBr3 QD surface defects are removed by the Cs4PbBr6 NCs. The defect‐engineered QDs exhibit high colloidal stability, retaining >90% of their initial PLQY after >120 days of ambient storage. Furthermore, thermal stability is demonstrated by a lack of heat‐induced aggregation at 120 °C. Blue LEDs fabricated from CsPbBr3 QDs with reconstructed surfaces exhibit a maximum external quantum efficiency of 4.65% at 480 nm and excellent spectral stability.

Keywords