PLoS ONE (Jul 2010)

Shiga toxin increases formation of clathrin-coated pits through Syk kinase.

  • Audrun Utskarpen,
  • Ramiro Massol,
  • Bo van Deurs,
  • Silje Ugland Lauvrak,
  • Tomas Kirchhausen,
  • Kirsten Sandvig

DOI
https://doi.org/10.1371/journal.pone.0010944
Journal volume & issue
Vol. 5, no. 7
p. e10944

Abstract

Read online

Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible mechanism by which Stx enhances its own endocytosis.