iScience (Oct 2023)
New insights into transcriptome variation during cattle adipocyte adipogenesis by direct RNA sequencing
Abstract
Summary: We performed direct RNA sequencing (DRS) together with PCR-amplified cDNA long and short read sequencing for cattle adipocyte at different stages. We proved that the DRS was with advantages to avoid artificial transcripts and questionable exitrons. Totally, we obtained 68,124 transcripts with information of alternative splicing, poly (A) length and mRNA modification. The number of transcripts for adipogenesis was expanded by alternative splicing, which lead regulation mechanisms far more complex than ever known. We detected 891 differentially expressed genes (DEGs). However, 62.78% transcripts of DEGs were not significantly differentially expressed, and 248 transcripts showed opposite changing directions with their genes. The poly (A) tail became globally shorter in differentiated adipocyte than in primary adipocyte, and had a weak negative correlation with gene/transcript expression. Moreover, the study of different mRNA modifications implied their potential roles in gene expression and alternative splicing. Overall, our study promoted better understanding of adipogenesis mechanisms in cattle adipocytes.